開(kāi)關(guān)電源 EMI的特點(diǎn)
作為工作于開(kāi)關(guān)狀態(tài)的能量轉換裝置,開(kāi)關(guān)電源的電壓、電流變化率很高,產(chǎn)生的干擾強度較大;干擾源主要集中在功率開(kāi)關(guān)期間以及與之相連的散熱器和高平變壓器,相對于數字電路干擾源的位置較為清楚;開(kāi)關(guān)頻率不高(從幾十千赫和數兆赫茲),主要的干擾形式是傳導干擾和近場(chǎng)干擾;而印刷線(xiàn)路板(PCB)走線(xiàn)通常采用手工布線(xiàn),具有更大的隨意性,這增加了PCB分布參數的提取和近場(chǎng)干擾估計的難度。
EMI 測試技術(shù)
目前診斷差模共模干擾的三種方法:射頻電流探頭、差模抑制網(wǎng)絡(luò )、噪聲分離網(wǎng)絡(luò )。用射頻電流探頭是測量差模共模干擾最簡(jiǎn)單的方法,但測量結果與標準限值比較要經(jīng)過(guò)較復雜的換算。差模抑制網(wǎng)絡(luò )結構比較簡(jiǎn)單,測量結果可直接與標準限值比較,但只能測量共模干擾。噪聲分離網(wǎng)絡(luò )是最理想的方法,但其關(guān)鍵部件變壓器的制造要求很高。
目前抑制干擾的幾種措施
形成電磁干擾的三要素是干擾源、傳播途徑和受擾設備。因而,抑制電磁干擾也應該從這三方面著(zhù)手。首先應該抑制干擾源,直接消除干擾原因;其次是消除干擾源和受擾設備之間的耦合和輻射,切斷電磁干擾的傳播途徑;第三是提高受擾設備的抗擾能力,減低其對噪聲的敏感度。目前抑制干擾的幾種措施基本上都是用切斷電磁干擾源和受擾設備之間的耦合通道,它們確是行之有效的辦法。常用的方法是屏蔽、接地和濾波。
采用屏蔽技術(shù)可以有效地抑制開(kāi)關(guān)電源的電磁輻射干擾。
例如,功率開(kāi)關(guān)管和輸出二極管通常有較大的功率損耗,為了散熱往往需要安裝散熱器或直接安裝在電源底板上。器件安裝時(shí)需要導熱性能好的絕緣片進(jìn)行絕緣,這就使器件與底板和散熱器之間產(chǎn)生了分布電容,開(kāi)關(guān)電源的底板是交流電源的地線(xiàn),因而通過(guò)器件與底板之間的分布電容將電磁干擾耦合到交流輸入端產(chǎn)生共模干擾,解決這個(gè)問(wèn)題的辦法是采用兩層絕緣片之間夾一層屏蔽片,并把屏蔽片接到直流地上,割斷了射頻干擾向輸入電網(wǎng)傳播的途徑。為了抑制開(kāi)關(guān)電源產(chǎn)生的輻射,電磁干擾對其他電子設備的影響,可完全按照對磁場(chǎng)屏蔽的方法來(lái)加工屏蔽罩,然后將整個(gè)屏蔽罩與系統的機殼和地連接為一體,就能對電磁場(chǎng)進(jìn)行有效的屏蔽。電源某些部分與大地相連可以起到抑制干擾的作用。例如,靜電屏蔽層接地可以抑制變化電場(chǎng)的干擾;電磁屏蔽用的導體原則上可以不接地,但不接地的屏蔽導體時(shí)常增強靜電耦合而產(chǎn)生所謂“負靜電屏蔽”效應,所以仍以接地為好,這樣使電磁屏蔽能同時(shí)發(fā)揮靜電屏蔽的作用。電路的公共參考點(diǎn)與大地相連,可為信號回路提供穩定的參考電位。因此,系統中的安全保護地線(xiàn)、屏蔽接地線(xiàn)和公共參考地線(xiàn)各自形成接地母線(xiàn)后,最終都與大地相連.在電路系統設計中應遵循“一點(diǎn)接地”的原則,如果形成多點(diǎn)接地,會(huì )出現閉合的接地環(huán)路,當磁力線(xiàn)穿
過(guò)該回路時(shí)將產(chǎn)生磁感應噪聲,實(shí)際上很難實(shí)現“一點(diǎn)接地”。因此,為降低接地阻抗,消除分布電容的影響而采取平面式或多點(diǎn)接地,利用一個(gè)導電平面(底板或多層印制板電路的導電平面層等)作為參考地,需要接地的各部分就近接到該參考地上。為進(jìn)一步減小接地回路的壓降,可用旁路電容減少返回電流的幅值。在低頻和高頻共存的電路系統中,應分別將低頻電路、高頻電路、功率電路的地線(xiàn)單獨連接后,再連接到公共參考點(diǎn)上。濾波是抑制傳導干擾的一種很好的辦法。例如,在電源輸入端接上濾波器,可以抑制開(kāi)關(guān)電源產(chǎn)生并向電網(wǎng)反饋的干擾,也可以抑制來(lái)自電網(wǎng)的噪聲對電源本身的侵害。在濾波電路中,還采用很多專(zhuān)用的濾波元件,如穿心電容器、三端電容器、鐵氧體磁環(huán),它們能夠改善電路的濾波特性。恰當地設計或選擇濾波器,并正確地安裝和使用濾波器,是抗干擾技術(shù)的重要組成部分。
EMI濾波技術(shù)是一種抑制尖脈沖干擾的有效措施,可以濾除多種原因產(chǎn)生的傳導干擾。